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This paper obtains the 1-soliton solution of birefringent fibers, with Kerr law nonlinearity, in presence of perturbation terms. 
The perturbation terms that are studied are the inter-modal dispersion, third order dispersion, self-steepening term and 
nonlinear dispersion. Both bright and dark soliton solutions are considered. There are several constraint conditions that fall 
out during the course of derivation of the soliton solutions. The numerical simulations are also provided.  
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1.  Introduction 
 
Optical solitons is a very important area of research in 

the area of Nonlinear Optics. Several papers are published 
in this area for the past few decades [1-15]. There has been 
an overwhelming amount of sequential new results that are 
constantly being reported in several journals. While the 
focus in most of the existing papers is on polarization 
preserving fibers, it is also equally important to study 
birefringent fibers in details. The integrability aspects of 
solitons in birefringent fibers, in presence of strong 
Hamiltonian perturbations, is the focus of study in this 
paper. In order to be complete, both bright and dark soliton 
solutions are covered in this paper.  

Optical soliton solutions in birefringent fibers requires 
special analytic as well as numerical treatment to carry out 
its investigation. As the polarization state of the optical 
wave changes with propagation distance, the interaction 
between two linear polarization states is obvious. The 
optical wave energy interchanged in different polarization 
state depends on the birefringence value [1, 2, 5, 6]. For 
strong birefringent materials such as liquid crystals, this 
interaction is observed within a very short distance. On the 
other hand, weak birefringence that is observed in regular 
optical fibers, this interaction between polarization states 
is gradual [5, 6]. Solving nonlinear Schrödinger's equation 
(NLSE) usually gives a soliton solution for the wave 
propagation in an optical fiber [2, 5]. However, for 
birefringent fibers, soliton solution exists if the system 
satisfies some constraint conditions.  

The general structure of the NLSE in birefringent 
fibers with strong Hamiltonian type perturbation taken into 
consideration is given by  

 ( ) ( ){ }2 2
1 1 1t xxiq a q b F q c F r q+ + +  

( ) ( )2 2
1 1 1 1 = 0x xxx

x x
i q i q q i q q i qα λ ν γ+ + + +  (1) 

  

 ( ) ( ){ }2 2
2 2 2t xxir a r b F r c F q r+ + +  

 

( ) ( )2 2
2 2 2 2 = 0x xxx

x x
i r i q q i r r i qα λ ν γ+ + + +  (2) 

 
Here, in (1) and (2), the function F  represents, in 

general, the non-Kerr law nonlinearity. The independent 
variables x  and t  represents the spatial and temporal 
variables respectively. The dependent variables ( , )q x t  
and ( , )r x t  represents the optical wave profile. The 

constant coefficients la , lb , lc , lλ  and lγ  for = 1,2l  
respectively represent the coefficients of group velocity 
dispersion (GVD), self-phase modulation, cross-phase 
modulation, self-steepening terms and third order 
dispersion (TOD) terms for the two polarized pulses. 
Additionally, lα  and lν  represents the coefficients of 
inter-modal dispersion and nonlinear dispersion. It needs 
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to be noted that for = = = = 0l l l lα ν λ γ , the pair (1)-
(2) reduces to the Manakov model [3]. Here, in (1) and (2), 
the coefficients with lα , lγ , lλ  and lν  all represent 
strong Hamiltonian type perturbations. 

 
 
2.  Mathematical analysis 
 
In this section, equations (1) and (2) will be 

considered in the Kerr law medium where ( ) =F s s , 
which means that the refractive index of light is directly 
proportional to its intensity. Thus, in a Kerr law medium, 
the circularly polarized components of the electric fields 
q  and r  is given by the following set of coupled 
generalized NLSE in dimensionless form [5, 6]:  

 

 ( )2 2
1 1 1 1t xx xiq a q b q c r q i qα+ + + +  

 ( ) ( )2 2
1 1 1 = 0xxx

x x
i q q i q q i qλ ν γ+ + +  (3) 

  

 ( )2 2
2 2 2 2t xx xir a r b r c q r i rα+ + + +  

 ( ) ( )2 2
2 2 2 = 0xxx

x x
i q q i r r i qλ ν γ+ + +  (4) 

 
 The analytical solution of these two equations is 

shown in details in the rest of the section and in the 
following two subsections. The numerical simulations will 
also confirm the propagation of soliton through 
birefringent fiber that was obtained using similar 
numerical simulation as was reported earlier [1, 2].  

In order to solve (3) and (4) for an exact solution the 
following hypothesis is considered.  

 

 1
1( , ) = ( , ) iq x t P x t e φ

                       (5) 
  

 2
2( , ) = ( , ) ir x t P x t e φ

                        (6) 
 

where ( , )lP x t  represents the wave form which could be 

either a dark or a bright soliton and lφ  represents the 
phase components of the two pulses. Thus,  
 

 =l l l lx tφ κ ω θ− + +                   (7) 
 

for = 1,2l . Here in (7), lκ  represents the frequency of 

the two solitons, lω  are the wave numbers and lθ  are the 
phase constants.  

 
 
 
 
 

Substituting (5) and (6) reduces (3) and (4) 
respectively to  

 
2

2
2 2l l l

l l l l l l
P P Pi P a i P
t x x

ω κ κ
⎛ ⎞∂ ∂ ∂

− + − −⎜ ⎟∂ ∂ ∂⎝ ⎠
 

3 2 2 33 l
l l l l l l l ll

Pb P c PP i P i P
x

λ κ∂⎛ ⎞+ + + −⎜ ⎟∂⎝ ⎠
      (8) 

3 2
2 3

3 23 3l l l
l l l l l

P P Pi i i P
x x x

γ κ κ κ
⎛ ⎞∂ ∂ ∂

+ − − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

22 = 0l l
l l l l l

P Pi i P i P
x x

α κ ν∂ ∂⎛ ⎞+ − +⎜ ⎟∂ ∂⎝ ⎠
  

 
for = 1,2l  and = 3l l− . Now, from (8), the real and 
imaginary part equations respectively are 
 

( )2 3
l l l l l l l la Pω α κ κ γ κ− + + +  

( ) ( )
2

3 2
23 = 0l

l l l l l l l l ll

Pb P c PP a
x

λκ γ κ ∂
+ + + + +

∂
   (9) 

and  
 

 
( )

( )

2

3
2

3

2 3

3 2 = 0

l l
l l l l l

l l
l l l l

P Pa
t x

P PP
x x

α κ γ κ

λ ν γ

∂ ∂
+ − − +

∂ ∂
∂ ∂

+ +
∂ ∂

        (10) 

 
 The study will now be split into bright and dark 

solitons separately that will be now seen in the following 
two subsections. 

 
 
2.1.  Bright solitons 
 
For bright solitons,  
  

( , ) = p il l
l lP x t A sech e φτ                (11) 

 
for = 1,2l , where lA  represents the amplitude of the 
soliton. Also,  

 )(= vtxB −τ                                 (12) 
 

where B  is the width of the two pulses and v  is the 
velocity with which the two polarized pulses travel. 
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Now, the real part equation that is given by (9) 
reduces to  

 

 
( )
( )

2 3

2 23
l l l l l l l l pl

l l l l l

a A
sech

a p A B

ω κ γ κ α κ
τ

γ κ

⎧ ⎫+ + − +⎪ ⎪
⎨ ⎬

+⎪ ⎪⎩ ⎭
 

 ( ) 22( 1) 3 pl
l l l l l lp p a A B sechγ κ τ+− + +  

( )2 32 3 = 0p p pl l l
l l l l l llc A A sech b A sechτ λκ τ

+
− + +    (13) 

 
while the imaginary part equation given by (10) reduces to  

 

( ){ }2 3 32 3

tanh

l l l l l l l l l l l l

pl

p vA B a p A B p A B

sech

α κ γ κ γ

τ τ

− − + −
 

 ( ) 333 2 tanhpl
l l l lp A Bsechλ ν τ τ− +  

 
23( 1)( 2) tanh = 0pl

l l l l lp p p A B sechγ τ τ++ + +  (14) 
 
 From (14), equating the exponents 13p  and 1 2p +  

yields  
 

 3 = 2l lp p +                          (15) 
 

which leads to  
 

 = 1lp                                          (16)  
 

for = 1,2l . Also, from (14) setting the coefficients of the 

linearly independent functions tanhp jlsech τ τ+
 for 

= 0,2j  to zero gives  
 

 2 2= 2 3l l l l l lv a Bα κ γ κ γ− − +   (17) 
 

and  
 ( ) 2 23 2 = 6l l l lA Bλ ν γ+                    (18) 

 
 From (10), equating the exponent pairs 2l lp p+ , 

3 lp  and 2lp + , 3 lp  also leads to the same value of lp  
as in (16). Similarly, from (13), setting the coefficients of 
the linearly independent functions to zero yields  

 

( ) ( )2 2 3= 3l l l l l l l l l la B aω γ κ κ α κ γ κ+ − + +     (19) 

 
and  

 ( ) ( )2 2 2= 2 3l l l l l l l llb A c A a Bλκ γ κ+ + +       (20) 
 
 
 

 Now, equating the two values of the velocity ( v ) of 

the solitons from (17) for 1,2=l  gives the width of the 
soliton as  

 

( ) ( ) ( )
1

2 2 2
2 1 1 1 2 2 1 1 2 2

1 2

2 3
=

a a
B

α α κ κ γ κ γ κ

γ γ

⎡ ⎤− − − + −
⎢ ⎥

−⎢ ⎥⎣ ⎦
 (21) 

 
which stays valid as long as  
 

 
( ) ( )

( )
2 1 1 1 2 2

1 2 2 2
1 1 2 2

2
( ) > 0

3

a aα α κ κ
γ γ

γ κ γ κ

⎧ ⎫− − −⎪ ⎪− ⎨ ⎬
+ −⎪ ⎪⎩ ⎭

 (22) 

 
 From (18), the amplitudes of the two polarized 

solitons are given by  
 

( ) ( ) ( ){ }
( )

1
22 26 2 3

=
3 2 ( )

l l l l l ll l l l l
l

l l l l

a a
A

γ α α κ κ γ κ γ κ

λ ν γ γ

⎡ ⎤− − − + −
⎢ ⎥
⎢ ⎥+ −
⎣ ⎦

 

(23) 
 

 where = 1,2l  and = 3l l− . This forces, after taking 
(22) into consideration, another constraint relation pair 
given by  

 ( )3 2 > 0l l lγ λ ν+                       (24) 
 

 Moreover, (20) produce an additional pair of 
constraints, namely  

 

 
( )3 3

= 3
3 2 3 2
l l l l l l

l l l
l l l l

b c
a

γ λκ γ
γ κ

λ ν λ γ
+

+ +
+ +

 (25) 

 
which is obtained by substituting the polarized amplitudes 

1A  and 2A  and the width B  into them.  
In conclusion, the 1-soliton solution in birefringent 

fibers is given by (11) where the amplitudes of the 
polarized solitons are given by (23) while the width is seen 
in (21). The velocity of the solitons is seen in (17). The 
wave numbers of the solitons are given by (19). In order 
for these solitons to exist there are several constraint 
conditions that must be valid. These are (22), (24) and (25) 
for = 1,2l .  

The following numerical simulation of a right soliton 
shows that the solitons propagate as long as the 
perturbation terms stay within a certain bound. For 
example if the balance of GVD and TOD breaks down, 
then the media will no longer support the soliton. It rather 
will start shedding dispersive energy in the form of soliton 
radiation.  
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Fig. 1. The typical shape of bright soliton. 
 

 
2.2.  Dark Solitons 
 
For dark solitons  
 

 ( , ) = tanh
ip lll lP x t A e φτ                     (26) 

 
where the definition of τ  stays the same as in (12). For 
dark solitons, the parameters lA  and B  represents free 
parameters. In this case, the real and imaginary part 
equations (9) and (10) respectively reduce to  
 

 ( )2 3 tanh pll l l l l l laω α κ κ γ κ τ− − + +  

 

( )
2

2
2

( 1)tanh3
2 ( 1)tanh tanh

pll
l l l l p pl ll l

p
p B a

p p
τ

γ κ
τ τ

−

+

⎧ ⎫−⎪ ⎪+ + ⎨ ⎬
− + +⎪ ⎪⎩ ⎭
( )2 22 3 = 0tanh tanhp p pl lll l l l llc A b Aτ λκ τ++ + +   (27) 

 
and  
 

 ( )1 1tanh tanhp pl llp v τ τ− +− −  

( )( )2 1 12 3 tanh tanhp pl ll l l l l lp aα κ γ κ τ τ− ++ − − −

 ( ) ( )2 3 1 3 13 2 tanh tanhp pl ll l l lp Aλ ν τ τ− ++ + −  

 ( )
3

2
2 1

( 1)( 2)tanh
3 3 2 tanh

pll l
l l pll l

p p
p B

p p

τ
γ

τ

−

−

⎧ − − −⎪+ ⎨
− +⎪⎩

 

 
( )2 1

3

3 3 2 tanh
= 0

( 1)( 2)tanh

pll l

pll l

p p

p p

τ

τ

+

+

⎫+ + −⎪+ ⎬
+ + ⎪⎭

 (28) 

 
 Now from (28), equating the exponents 1lp +  and 

3 1lp −  gives  

 1 = 3 1l lp p+ −                           (29) 
which leads to  

 = 1lp                                          (30) 
 

 It needs to be noted that the same value of lp  is 

obtained on equating the exponents 3lp +  and 3 1lp + . 
Now, setting the coefficients of the linearly independent 
functions tanh p jl τ+ , for = 1,1,3j − , in (28), to zero 
gives  

 2 2= 2 3 2l l l l l lv a Bα κ γ κ γ− − −          (31) 
  

 
( )2 2 2= 2 3 3 2 8l l l l l l l l lv a A Bα κ γ κ λ ν γ− − − + −  (32) 

 
and  

 ( ) 2 23 2 8 = 0l l l lA Bλ ν γ+ +             (33) 
 

 Now, it needs to be noted that on equating the two 
values of the velocities of the solitons from (31) and (32) 
also yields the same relation as given by (33). Moreover, 
from (28), the stand-alone linearly independent function is 



Bright and dark optical solitons in birefringent fibers with Hamiltonian perturbations and Kerr law nonlinearity        575 
 

 

3tanh pl τ−  whose coefficient must therefore vanish. This 
also leads to the same value of lp  as in (30).  

Again, from the real part equation given by (27), upon 
equating the exponent pairs 2l lp p+ ; 3 lp  and 2lp + ; 

2l lp p+  also gives the same value of lp  as in (30). 
Also, in (27) the stand alone linearly independent function 

2tanh pl τ−  must have its coefficient vanish which once 
again leads to (30). From (27), upon setting the 
coefficients of the linearly independent functions 

tanh p jl τ+  for = 0,2j  implies  
 

( ) ( )2 2 2 2= 2 6l l l l l l ll a B Bω α κ κ γ κ κ− − + − +  (34) 

 
and 

( ) ( )2 2 22 3 = 0l l l l l l l lla B c A b Aγ κ λκ+ + + +   (35) 
 

 Now equating the two values of the soliton velocity 
( v ), for = 1,2l  from (31) gives the free parameter B  of 
the soliton as  

 

( ) ( ) ( )
1

2 2 2
1 2 1 1 2 2 1 1 2 2

1 2

2 3
=

2( )

a a
B

α α κ κ γ κ γ κ

γ γ

⎡ ⎤− − − − −
⎢ ⎥

−⎢ ⎥⎣ ⎦
 (36) 

 
which stays valid as long as  
 

 
( ) ( )

( )
1 2 1 1 2 2

1 2 2 2
1 1 2 2

2
( ) > 0

3

a aα α κ κ
γ γ

γ κ γ κ

⎧ ⎫− − −⎪ ⎪− ⎨ ⎬
− −⎪ ⎪⎩ ⎭

 (37) 

 
 From (33), for = 1,2l , the two other free 

parameters are  

( ) ( ) ( ){ }
( )

2
1

22

)(23
323

= ⎥
⎦

⎤
⎢
⎣

⎡

−+
−+−+−

llll

lllllllllll
l

aa
A

γγνλ
κγκγκκααγ

 (38) 
 

where = 1,2l  and = 3l l− . This forces, after taking 
(37) into consideration, another constraint relation pair 
given by  
 

 ( )3 2 < 0l l lγ λ ν+                           (39) 
 
 Finally, equation (35) leads to another constraint 

relation that is given by  
  

( )3
= 3

3 2 3 2
l l l l l l

l l l
l l l l

b c
a

γ λκ γ
γ κ

λ ν λ γ
+

+ +
+ +

 (40) 

 
 Hence, the dark 1-soliton solution in birefringent 

optical fibers in presence of strong Hamiltonian 
perturbation terms is given by (26) where the free 
parameters lA  and B  are given by (38) and (36) 
respectively, while the velocities of the soliton are given 
by (31) or (32) and finally the wave numbers are given by 
(34). These lead to several constraint conditions that are 
seen in (37), (39) and (40).  

The following figure is the profile of a dark soliton 
that is supported by the coupled NLSE given by (3) and 
(4) subjected to the aforementioned constraints.  

 
 

Fig. 2. The typical shape of dark soliton. 
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3.  Conclusions 
 
This paper studies the integrability aspects of the 

coupled NLSE that governs the propagation of solitons 
through birefringent optical fibers. Both bright and dark 
optical solitons are taken into consideration. There are 
several perturbation terms that are taken into consideration 
all of which are Hamiltonian type. Finally, there are the 
constraint conditions that fall out during the course of 
integrability. These conditions show that the solitons will 
exist only when these criteria remain valid. A couple of 
numerical simulations are also provided to illustrate the 
analytical development.  

These results will be extended further in future when 
several other forms of nonlinearity will be studied. 
Additionally, the quasi-stationary soliton solutions will 
also be obtained, by the aid of multiple-scale perturbation 
analysis, in presence of both Hamiltonian as well as non-
Hamiltonian type perturbation terms. Those results will be 
reported in future. 
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